

Company profile

 JK Cement's operations commenced with commercial production at its flagship grey cement unit at Nimbahera, Rajasthan in May 1975

Group Cement capacity

• Grey Cement 20.67M TPA

White Cement 1.51M TPAWall Putty 1.20M TPA

JK Cement Works, Balasinor

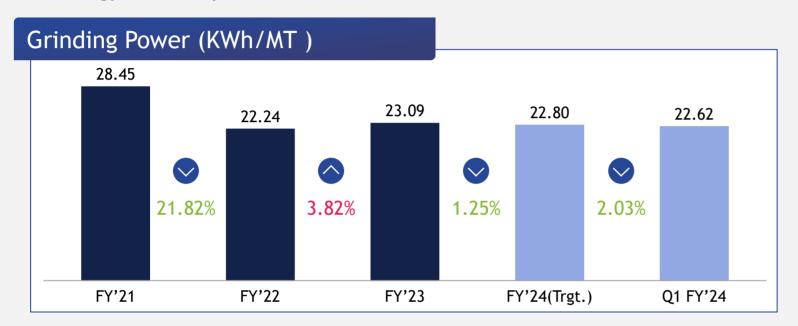
Capacity 0.80M TPACommencement Oct-2020

• Production FY'23 0.60M TPA

• Contribution of PPC 100 %

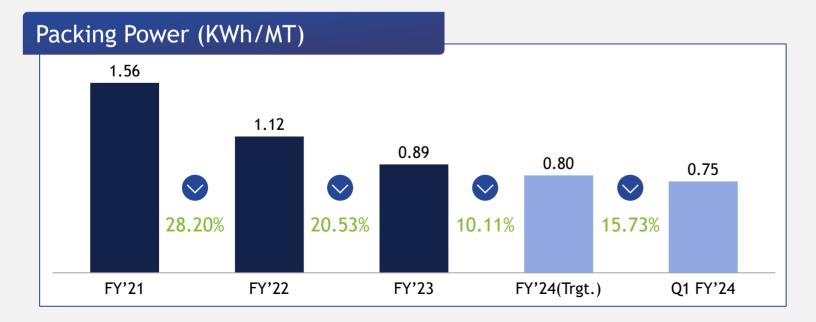
1

Overview of JK Cement Ltd. Balasinor



	Material Unloading (BRU)	Vertical Roller Mill	Packing Plant	
Make	Schenck Process	FLSmidth	Beumer	
Model No	HTU-MARK-IIIC	OK 40-4	Fillpac RV 16	
Capacity	250 Tons	100 TPH	240 TPH	

Energy consumption

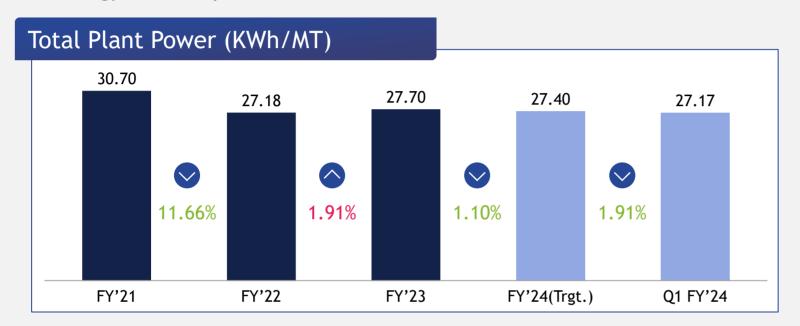

Energy break-up

Remarks

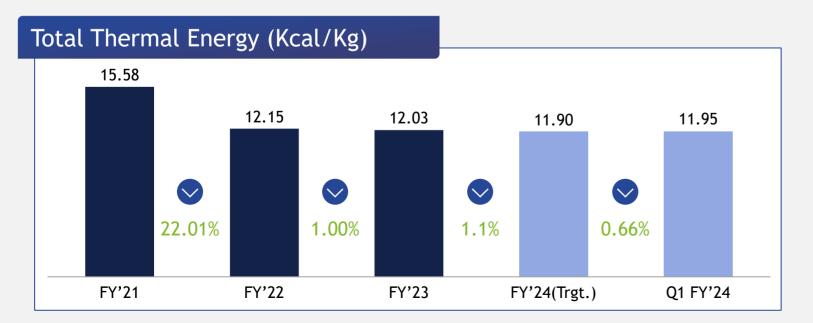
S. No Description

- 1 Chemical gypsum consumption increased by 2.2% to 4.4% on cement basis
- 2 Plant operates on lower temp. 80 °C

Remarks


S. No Description

- 1 Energy optimization (VFD, drive reduce)
- 2 Bulk dispatches increases

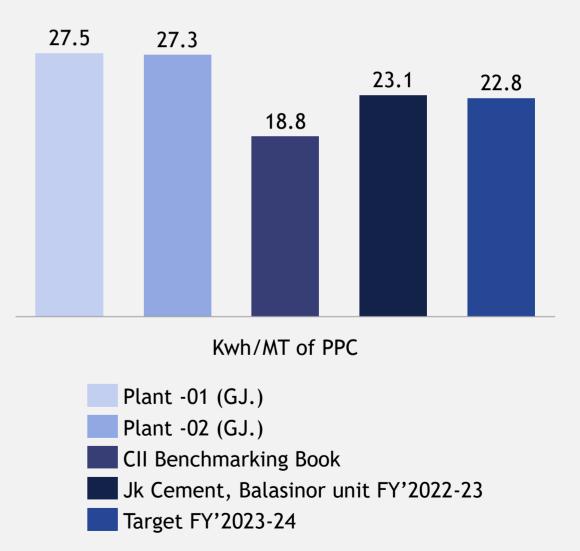


Energy consumption

Energy break-up

Remarks S. No Description 1 Grinding power increased (FY'23) 2 Packing power reduced (FY'24) 3 Compressor power optimized (FY'24)

Remarks S. No Description 1 Plant operates on lower temp. 80 °C 2 Increase in recirculation volume 3 Water consumption reduced



Competitors & National Benchmark

Details of external benchmarking			
Name of Competitors Kwh/MT of PPC			
Plant-01 (GJ)	27.5		
Plant -02 (GJ) 27.3			
CII Benchmarking Book (source: CII) 18.8			
JK Cement, Balasinor FY'2022-23 23.1			
Target FY'24 (with 60% chemical gypsum mix) 22.8			

	Action plan to achieve energy target's FY'24		
S.No.	S.No. Planning		
1	Improving Clinker quality to reduce CF by 0.5%		
2	Installation of VFDs (4nos) for power Reduction		
3	Process fan power reduction through fan inlet velocity optimization		
4	Mill Circuit pressure drop reduction		
5	Dry flyash unloading circuit power optimization		
6	Optimization of classifier efficiency		

Competitors in cluster & National benchmark

Road Map to Achieve Internal Benchmark

CCR Operations

- 100% utilization of Expert control system
- KPIs Monitoring & analysis
- Auto data fetching and storage

- Real time variable product cost
- Real time weighing system error monitoring.
- Al based bag counting
- RFID & Auto plant operation

- Separator optimization for residue control
- Real time product quality measurement

- Industry 4.0
- Predictive maintenance
- Advance sensor to improve life of equipment
- SAP PM module utilization.

Testing of raw material

- · Automation of sampling and testing
- New SOPs for RM testing

Energy

- 100% Renewable energy uses
- 100% Bio-mass utilization
- Idle power optimization.
- VFD installation
- PF optimization

Raw material preparation

- · Sun drying for moisture removal
- Selection of raw material

Indicators	FY-23	Target FY-24
Throughput	106 TPH	110 TPH
SEC-Grinding	23.09	22.80
SEC Total	27.70	27.40

List of major EnCon project planned in FY'24

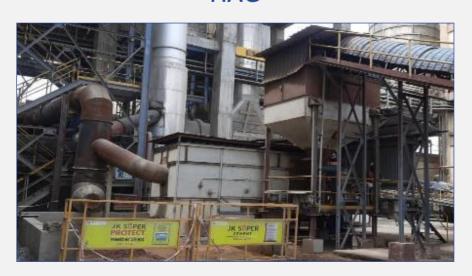
Major EnCon project planned FY'24

S. No	Title of Project	Annual Saving (Lac kWh)	Investment (Rs in Las)
1	Enlargement of fan inlet duct box area to reduce fan inlet velocity and impeller replacement work	4.00	30.00
2	Optimization of the classifier of the mill	1.00	4.00
3	CFD study of mill outlet duct to reduce pressure drop	0.18	3.00
4	Direct unloading of dry fly ash to the bin bypassing the fly ash silo circuit	0.32	0.50
5	Installation of VFDs (4nos) for power reduction	1.42	8.20
6	Mill water spray pump to be stopped	0.06	0.10
7	Switch off one power transformer	0.13	Nil
8	Reject control gate to avoid false air entry in the mill	0.40	6.00
	Total	7.51	51.8

List of Energy Saving Projects Implemented

Energy Saving Projects

Year	No. of Energy saving projects	Investments (INR Million)	Electrical savings (Lacs kWh)	Thermal savings (Kg/MT cement)	Savings (INR Million)	Impact on SEC (Electrical kWh/MT cement)
FY' 21	2	0.00	3.56	_	3.10	1.60
FY' 22	23	1.70	20.71	0.30	21.20	3.87
FY' 23	11	1.00	2.66	0.01	13.13	0.45



Innovative Project 1-Installation of Agro waste HAG

Description	Impact	Savings (INR in lacs)	Investment (INR in lacs)
Objective To reduce plant operating cost with green innovative approach	Fuel cost reduced by INR 50/MTcem		
Solution We introduce a new green technology of Agro Waste HAG which replace the hydrocarbon oil with bio mass fuel. We have installed fluidised bed bio-mass HAG which is able to burn Agro waste, saw dust shrubs and briquettes	Plant CO2 emission reduced from 9.2 to 0.4 Kg/MTCementitious (FY'24)	195.13	132

HAG

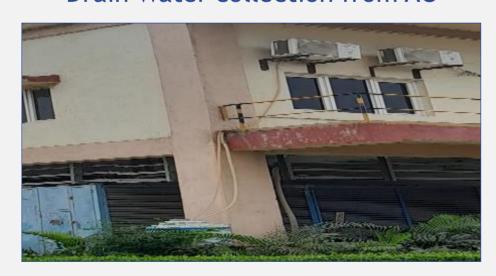
HAG Chamber

Innovative Project 2-Wireless Communication for Packer

Description	Impact	Savings (INR in lacs)	Investment (INR in lacs)
Objective To increase packer reliability and reduce maintenance cost			
Problem statement The Packer communication slip rings worn out within 6 months and causes frequent communication faults in the packer	The packer operation reliability increased	0.67	0.15
Solution The Wireless Antenna configured as the alternate way (Wi-Fi base) to establish communication in the packer. The configured setting/arrangement is live for 10 months without any failure	rettability increased		

Communication ring position and worn out ring -

Wireless antenna installation pics



Innovative Project 3-Utilization of AC drain water

Description	Impact	Savings (INR in lacs)	Investment (INR in lacs)
Objective Reduction in ground water extraction	Water Savings ≈ 125 KL/Year		
Solution We are collecting water from split & Package AC, using it as distilled water for lab equipment, and draining it into electrical earth pits, which reduces the extraction of groundwater	Power savings ≈ 1.1 Lac/Year	1.30	0.10
	Inventory Savings ≈ 0.2 Lac/Year		

Drain Water collection from AC —

Pipe lines connected to Earth pits →

Utilization of Renewable Energy Sources

Group Renewable energy capacity

Site	WHRS (MW)	Solar/Wind (MW)
Nimbahera	13.20	7.02
Mangrol	29.10	6.93
Gotan	-	0.30
Muddapur	-	25.00
Jharli	-	0.30
Aligarh	-	4.50
Balasinor	-	1.80
Katni	-	1.00
Total (MW)	42.30	46.85

Utilization of Renewable Energy at Balasinor

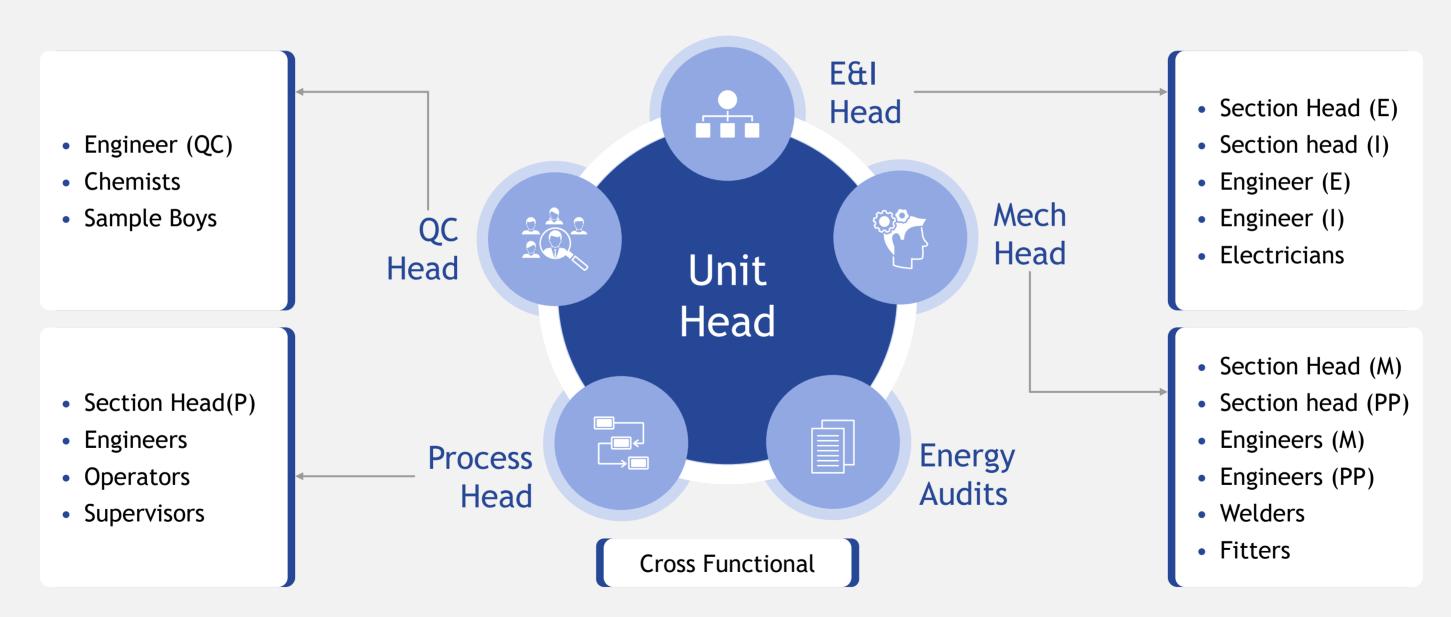
Year	Energy	Off site	Installed Capacity (MW)	Generation (Million kWh)	% of overall electrical energy
FY' 21	NA	NA	NA	NA	NA
FY' 22	Wind	Off site	1.8	0.784	5.39
FY' 23	Wind	Off site	1.8	3.15	19.00

Energy Monitoring System

Energy Data Collection

- EMS
- Total 25 Energy Meters for all section and major drives
- Section wise power capturing from IMCCs

Energy Reports


- Daily Power Report
- Real Time display of equipment's power

Review System

- Daily Variance analysis in power
- Daily Production meeting and Power review
- Monthly Review Meeting with MH sir.
- Comparison of data with internal benchmark

Energy Monitoring Cell

Digitization at JK cement Balasinor

Internet of things (IoT) in manufacturing

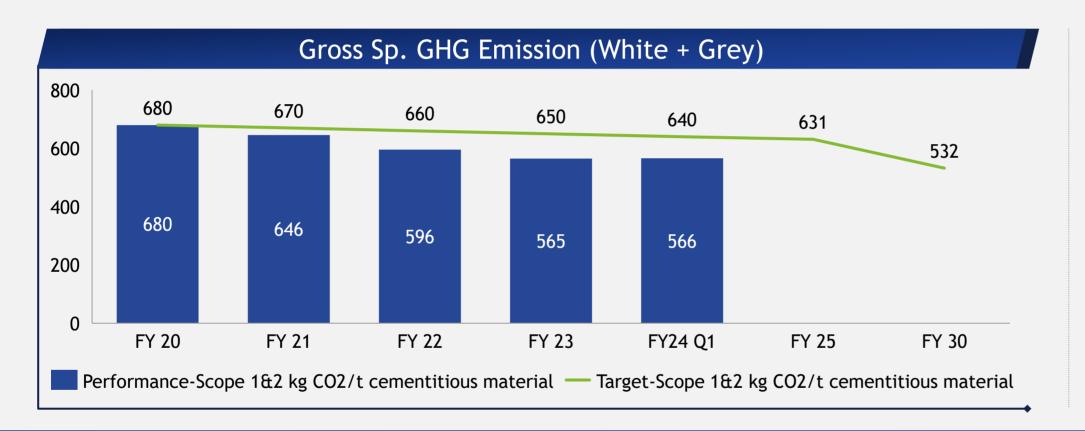
IoT in manufacturing will play a key role in predictive maintenance

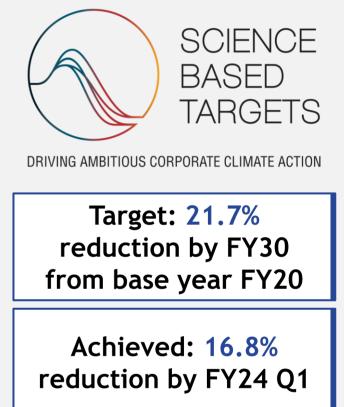
S. No	Implemented digitalization Projects
1	Various Mobile Apps for plant
2	IT-OT Integration for data traffics
3	Web -Ux web page for live plant screen
4	CMS for Mill Main gear box
5	E-LIMS system for Quality data recording
6	Cement live variable cost, Weigh feeder's live error, & Live power factor display on CCR operator screen
7	Group level Portal for kaizen's & energy saving projects



Digitization at JK cement Balasinor

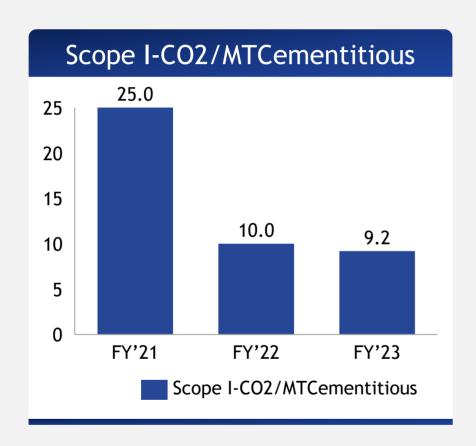
Mobile Application



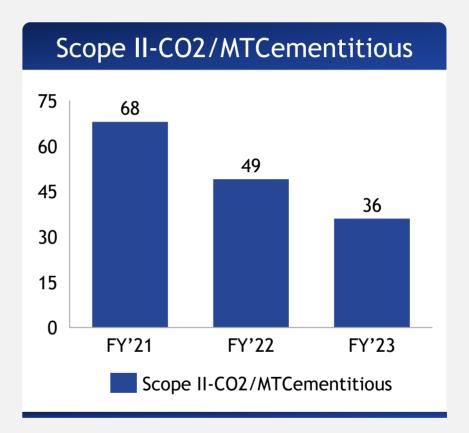


GHG Inventorisation-JK Cement ltd.

Gross Scope-1 & 2 GHG Emission Committed SBTi in FY2021 (Under Validation)



Aligned business model with UN's 2030 agenda for Sustainable Development and have committed SBTi in March, 21 for business ambitions well below 2°C to lower the Scope 1&2 emissions to the tune of 532 kg CO2 per ton of cementitious material by 2030, a reduction of 21.7% compared to 2020 level of 680 kg CO2 per ton of cementitious material



GHG Inventorisation-JK Cement Works, Balasinor

- Bio-Mass (AFR) HAG installed and oil based HAG uses reduces (commissioned in March'23)
- Clinker factor reduced by 2.85% (58.65 to 55.80)

Note:

Scope II-CO2 emission is reduced by increased in renewal energy consumption

GHG Inventorisation-JK Cement Works, Balasinor

Action Plan towards reduction of CO2 emission

S.No.	S.No. Action plan		
1	Maximize uses Bio Mass (AFR) HAG ≈ 90%		
2	Clinker factor reduction by 0.5%		
3	Procurement of new BLDC AC instead to conventional AC		
4	Uses of high capacity vehicle for inward and outward		
5	Additional 20% Incentive offered to employees for purchase of Electrical Vehicles		
6	Reverse logistics is being used for material transportation		

	S.No.	Action plan		
	1	Industry 4.0		
	2	100% Renewable energy uses		
	3	100% Re-cyclable bags of recycled raw material		
***	4	45% of plant area for plantation		
	5	Total plant power consumption < 23 Kw/MtCem.		

Achieve Net Zero Target (2030-2050) - JKCL

Fully development of Net Zero Technologies at Industrial Scale

CCUS

Green H2/Kiln Electrification

C&D Waste Utilization

Net Zero

CF < 0.60

%TSR >50

kwh/t <60

Clean Power 100%

Voluntary initiatives & commitment

Reporting Framework

Our 1st first report was published in FY 2013-14

Our 1st report published in FY 2020-21

Our 1st report was published in FY 2022-23

Our 1st BRSR report is published in FY 2022-23

Global Goals and Protocols

We are aligned with SBTi

As a global member of GCCA, we committed for 2050 Net Zero roadmap

We are aligned with the SDG road map developed by WBCSD for Indian **Cement Sector**

We committed UN-Energy Compacts in FY 2021 to drive the progress on the achievement of SDG7

ESG Ratings

We participate in S&P Global Corporate Sustainability Assessment (CSA)

We participate in globally accepted CDP. Disclosed for FY23

Implementation of ISO 50001:2018

Certified by 50001:2018 Validity: 11 August 2024

ISO 50001 brings an effective process to measure and manage energy use in order to Reduce/manage energy usage and operating costs

Learning from CII Energy Award Program

S.No.	Project Title		
1	<u></u>	PLC based Plant Lighting auto start stop from CCR	
2	(E)(O)	Sequential operation for clinker silo gate's	
3		Potable compressor installation for Clinker unloading system	
4		Installation trans vector nozzle for cleaning applications	
5	4	Installation of energy efficient BLDC AC	

Awards and Recognition

2021

2022

2022

2023

"Gold Award"

Apex India Green Leaf Award for plant efficiency "Gold Award"

Apex India
Occupational Health
& Safety Award

"Excellence Award"

CII National Award for Excellence in Energy Management

"Appreciation Award"

FICCI Excellence in Maintenance Systems

BUILD SAFE #YehP≣ccaHai

Thank You!